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The phase diagram of an infiltrated disperse medium which includes a circulating fluidized bed in
addition to fixed and fluidized beds and vertical pneumatic transport has been constructed. The ex-
pression to calculate the most important characteristic of a flow system, i.e., the transport velocity,
has been obtained. The definition of a circulating fluidized bed has been given.

As is well known, disperse infiltrated beds with ascending gas flow (fixed bed (FixB), fluidized bed
(FlB), circulating fluidized bed (CFlB), and vertical pneumatic transport (VPT)) are widely used in industry.
The similarity of the processes of transfer in these systems makes it possible to combine them into one series
and consider them in the general theoretical context. In [1], a unified system of dimensionless parameters
which describes the similarity of the processes of transfer in disperse beds with ascending gas flow has been
obtained and its capacity for rationally generalizing experimental data has been shown. As is well known, a
circulating fluidized bed, unlike other disperse systems, has been used only comparatively recently and is still
incompletely understood. Being the intermediate link between a fluidized bed and vertical pneumatic trans-
port, it has absorbed many features of these systems and is capable of operating in a very wide range of
velocities of a gas and flow rates of a solid material. Because of this, the difficulties arising on an attempted
mathematical description of a circulating fluidized bed seem to be insurmountable at present. As has been
noted in [2], there is not even a unified definition of a circulating fluidized bed, and its boundaries in the
phase diagram have not been established. In this connection, in the present work we have made an attempt
to describe a circulating fluidized bed within the framework of a unified phase diagram of a disperse system
with ascending gas flow and to establish the boundaries of its existence.

It is well known that the distinctive features of evolution of infiltrated disperse systems may be con-
veniently analyzed using a phase diagram which represents the plot of the pressure difference per unit height
of the bed versus the velocity of the gas flow. Such a diagram for the systems fixed bed — fluidized bed —
vertical pneumatic transport was proposed for the first time, apparently, by Zenz [3]. For the circulating
fluidized bed to be included into this diagram, to be specific, we take the following parameters of the dis-
perse systems: air at room temperature and atmospheric pressure as the fluidizing agent, solid particles with
d = 0.32 mm and ρs = 2600 kg/m3, bed height H0 = 0.5 m (fixed bed and fluidized bed) and H = 13.5 m
(circulating fluidized bed and vertical pneumatic transport), diameter of the apparatus D = 0.5 m, and value
of the circulation particle flux Js = 50 and 100 (kg/m2⋅sec) (circulating fluidized bed and vertical pneumatic
transport).

Let us consider the formulas to calculate the dependence ∆p ⁄ ∆h = f(u) in different disperse layers.
Fixed Blown-Through Bed. The quantity ∆p ⁄ ∆h is calculated from the known Ergun formula [4]
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Point A on the phase diagram (Fig. 1) corresponds to the moment of suspension of the bed

∆p

∆h



 u=umf

 = g (ρs − ρf) (1 − εmf) .
(2)

Combination (1) for ε0 = εmf and u = umf and Eq. (2) determine the rate of the beginning of fluidi-
zation umf [5].

Fluidized Bed. By virtue of the two-phase structure of the bed [6], its total resistance remains ap-
proximately constant; therefore, ∆p ⁄ ∆h decreases in accordance with the expansion of the bed H(u):
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We give one of the most substantiated formulas for calculation of the expansion of the bed [7]:
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Portion AB on the phase diagram corresponds to the calculation according to (3) with account for (4).
At point B, the piston regime sets in, in which the diameter of a gas bubble becomes approximately equal to
the diameter of the apparatus: Db h=Hmf

 = D. This condition enables us to determine the rate usl, i.e., the
coordinate of point B:

Fig. 1. Phase diagram of a disperse medium with ascending gas flow:
OA, fixed bed; AB, fluidized bed; CDE and C′D′E′, circulating fluidized
bed for Js = 100 and 50 kg/(m2⋅sec); FGH and F′G′H′, vertical pneumatic
transport for Js = 100 and 50 kg/(m2⋅sec); umf = 0.086 m/sec (point A);
usl = 0.96 m/sec (point B); ut = 2.27 m/sec; ud = 6.3 and 5.7 m/sec for
Js = 100 and 50 kg/(m2⋅sec) (points F and F′); u∗  = 8.15 and 6.7 m/sec
for Js = 100 and 50 kg/(m2⋅sec) (points D and D′); utr = 9.27 m/sec
(points E and E′);  uopt = 23.5 and 20.7 m/sec for Js = 100 and 50
kg/(m2⋅sec) (points G and G′. ∆p ⁄ ∆h, P/m; u, m/sec.
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usl C umf + 0.395 
g1 ⁄ 2D3 ⁄ 2

Hmf
 . (5)

In (5), we have used the known formula for the diameter of a gas bubble [8]:

Db = 
Dh

0.7
 = 1.86h Frh

1 ⁄ 3 . (6)

When the piston regime sets in curve AB terminates since, because of the strong variations of the
upper boundary of the bed, it becomes impossible to quantitatively analyze the dependence ∆p ⁄ ∆h = f(u).
With further increase in the rate u ⁄ usl the intense removal of particles from the nonflow fluidized bed begins.
By convention, only one particle is left in the system for u = ut. This state corresponds to the free-fall veloc-
ity of a single particle ut. Many formulas have been proposed to calculate this quantity; the most convenient
of them is the Todes formula [5].

Vertical Pneumatic Transport. We consider it after a fluidized bed as a system that is more com-
pletely understood than a circulating fluidized bed and not in order of increasing rate of filtration of the gas.
Unlike a fixed bed and a fluidized bed, here we have an important additional parameter characteristic of a
flow system, i.e., the circulation particle flux Js. The pressure gradient is calculated from the formula [9]
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which yields the family of curves (for different values of Js) on the phase diagram. We note that, as com-
pared to [9], Eq. (7) contains the additional term Js(u − ut)/2H, which takes into account the influence of the
acceleration of particles. The lower boundary of existence of the vertical pneumatic transport (points F and
F′) correspond to the known descent velocity [10]. We give the recent and most reliable formulas for determi-
nation of this quantity [9]:

ud − ut

ut
 = 0.11B0.5 ,     d ≤ 0.28 mm ; (8)

ud − ut

ut
 = 0.02Js

∗  ,     0.586 ≤ d ≤ 1.67 mm . (9)

At points G and G′, the curves ∆p ⁄ ∆h = f(u) have a minimum whose position is determined from the
following dependences [9]:

uopt = ut (4 ⁄ 3 + 0.65B0.8) ,     B ≤ 1 ⁄ 3 , (10)

uopt = ut (1 + B0.4) ,   B > 1 ⁄ 3 . (11)

The region to the right of points G and G′, i.e., GH and G′H′, where the contribution of the forces of
friction of the two-phase medium against the surface of the riser begins to have an effect, is characterized by
a rapid growth in the pressure difference with increase in the velocity of  the gas.

Circulating Fluidized Bed. Curves CE and C′E′ for different values of Js were constructed according
to the formula
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∆p

∆h
 = 0.6 
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H
 (u − ut) Frt

−1.68 , (12)

obtained on the basis of the empirical dependence for calculation of the resistance of the riser [11]:

∆p = 0.6 Js (u − ut) Frt
−1.68 . (13)

We note that because of the inhomogeneous structure of the circulating fluidized bed [2] the real
values of the pressure gradient ∆p ⁄ ∆h will substantially vary over the riser height and expression (12) should
be considered as the averaged value of ∆p ⁄ ∆h making it possible to present the circulating fluidized bed on
the phase diagram. At present, there are no definite recommendations on the position of points C and C′ that
correspond to the beginning of the region of the circulating fluidized bed. It is clear that these points will be
near ut and their specific location depends on Js and is determined by the suspension-carrying capacity of the
flux. The positions of the last right-hand points E and E′ are, apparently, determined as the points of inter-
section of curves FGH and F′G′H′ for the pneumatic transport, i.e., from the condition
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which, with account for (7) and (12), will take the form
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As the evaluations show, for the velocities u < uopt one can disregard the influence of friction against
the riser walls (second term on the left-hand side of (15)). Equation (15) is simplified

0.6 Frt
−0.68 − 0.5 Frt − 1 = 0 (16)

and yields the following expression to find the sought rate:

(Frt)tr = 
(utr − ut)

2

gH
 = 0.37 . (17)

To elucidate the physical conditions that correspond to u = utr it is convenient to analyze the expen-
diture of the gas power in the circulating fluidized bed and in the vertical pneumatic transport. As follows
from (7), the excess power of the gas ∆p(u − ut) in the case of pneumatic transport is equal to

NVPT = ∆p (u − ut) = JsgH + 
Js (u − ut)

2

2
 + 

1.36

D
 J
_

s
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ρfu
2

2
 (u − ut) H . (18)

From (18) it is seen that the excess power of the gas (fan) is expended on: (a) lifting the particles in
the gravity field, (b) accelerating them from 0 to u − ut on the acceleration portion, and (c) overcoming the
forces of friction against the channel walls. The analogous expression can, apparently, be written for a circu-
lating fluidized bed, where one should also take into account another category of expenditure of the gas en-
ergy (this category is characteristic precisely of a circulating fluidized bed), i.e., expenditure of energy on
sustaining the internal circulation of particles (Nint.c):
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NCFlB = JsgH + 
Js (u − ut)

2

2
 + Nint.c + Nfr . (19)

We note that for a circulating fluidized bed (unlike vertical pneumatic transport) a specific expression to cal-
culate the expenditure of energy on friction against the riser walls remains to be obtained, and this term is
written only in general form. It is clear that at the point u = utr NCFlB = NVPT, and Eqs. (18) and (19) yield
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D
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_
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 1 ⁄ 2 
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2

2
 (u − ut) = Nint.c + Nfr . (20)

Using the natural assumption that for u = utr the expenditure of energy on friction against the riser
walls is the same in the two systems, from (2) we have the condition which corresponds to u = utr:

Nint.c = 0 , (21)

i.e., at the point u = utr, the internal circulation of particles in the circulating fluidized bed disappears and the
difference between the circulating fluidized bed and vertical pneumatic transport exists no longer, in essence.
Consequently, the velocity u = utr can be identified with the transport velocity, to calculate which Eq. (17)
yields the simple formula

utr = ut + 0.61 √gH  . (22)

Disregarding the contribution of friction against the riser walls (just as in the case of vertical pneu-
matic transport, this is allowable for u < uopt), from (13) and (19) we obtain an expression for calculation of
the fan power expended on sustaining the internal circulation of particles:

Nint.c = JsgH (0.6 Frt
−0.68 − 1) − 

Js (u − ut)
2

2
 . (23)

In connection with the foregoing, we can give the following definition of a circulating fluidized bed:
a circulating fluidized bed is a flow two-phase system with a marked internal circulation of particles.

Points D and D′ on the phase diagram characterize another important aspect in the evolution of a
circulating fluidized bed with smooth increase in the gas velocity, i.e., the disappearance of a fluidized bed
that exists at the gas-distributor grid [12]. The corresponding velocity (u∗ ) can be evaluated from the follow-
ing considerations. In [11], the author obtained a formula to calculate the height of the fluidized bed at the
gas distributor in a circulating fluidized bed:

z
H

 = 1.25 Frt
−0.8 J

_
s
1.1 . (24)

By assuming that the fluidized bed virtually disappears, attaining a certain small critical value of z∗  = AH,
from (24) we obtain for u∗

u∗  − ut

ut
 = 

1.25

A
 J
~

s
 ∗

0.4

 FrH
−0.3 . (25)

Processing of the experimental data on u∗  which are available in the literature [12, 13] (Fig. 2), en-
abled us to find A = 0.016. The resultant dependence for calculation of the velocity u∗  at which the fluidized
bed at the gas distributor disappears has the form
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u∗  − ut

ut
 = 5.0 J

~
s
 ∗

0.4

 FrH
−0.3 . (26)

Formula (26) has been checked in the following range of variation of experimental conditions:
0.15 ≤ d ≤ 0.46 mm, 1.1 ≤ Js ≤ 45 kg/(m2⋅sec), H = 8.5 and 13.5 m, and ρs = 2600 kg/m3.

Let us consider the issue of the hydrodynamic conditions of descent of the particles (formation of the
contour of their internal circulation) in the case of a smooth decrease in the gas velocity in the flow system.
As is well known [2], the internal circulation of particles in a circulating fluidized bed is formed by the
clusters of particles descending at the riser walls and by single particles ascending at the center. Based on
such a structure of circulation flows, the formation of the internal circulation of particles in a pneumatic-
transport system with gradual decrease in the filtration rate of the gas seems to be as follows. Since the
concentration of the particles under conditions of vertical pneumatic transport is expressed [9] as

1 − ε = J
_

s = 
Js

ρs (u − ut)
 , (27)

it follows that, as the gas velocity decreases (for a constant Js), the concentration of particles increases. By
virtue of the existing nonuniformity of the gas flow in the horizontal section of the riser [2], the concentra-
tion of particles at the walls will be substantially (2 to 3 times) higher than the average concentration. With
the universally present local turbulent pulsations of the gas velocity and hence the concentration of particles,
the probability of appearance of bluff groups of particles that are unable to be held by the gas flow increases
under these conditions. These macroformations begin to fall down, producing the lowering circulation motion
of the particles.

Based on such concepts, it is easy to evaluate the minimum size of clusters formed at gas velocities
which are close to utr. To calculate the vertical dimension of a cluster a simple formula was obtained [14]
which relates this quantity to the concentration of particles:

L
H

 = 0.024 √1 − ε  . (28)

When u = utr Eqs. (27) and (28) yield for Lmin

Lmin

H
 = 0.024 √ Js

ρs (utr − ut)
 . (29)

Fig. 2. Velocity for which the fluidized bed disappears: 1) [13] and H =
8.5 m; 2) [12] and H = 13.5 m. The solid line denotes calculation ac-
cording to (26).
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With account for formula (22) we finally obtain

Lmin

H
 = 0.031 √Js

ρs √gH
 . (30)

Let us make more specific the calculation for the conditions of [15], where the vertical dimensions of
the clusters in a circulating fluidized bed 0.15 m in diameter and 11 m high have been measured with a
capacitive pickup. For Js = 45 kg/(m2⋅sec), d = 0.251 mm, and ρs = 2600 kg/m3, Eq. (30) yields
Lmin C 0.013 m, which corresponds to Lmin

 ⁄ d C 52. The obtained value of Lmin is close to the minimum value
of L measured in [15]: Lmin C 0.018 m.

It is of interest to evaluate the values of the average concentrations of particles under the conditions
where clusters begin to form, i.e., when u = utr. From (22) and (27) it follows that

(1 − ε)min = 
Js

ρs (utr − ut)
 = 1.64 

Js

ρs √gH
 . (31)

Hence for the operating conditions mentioned above [15] we have (1 − ε)min C 0.0027, which corre-
sponds to εmax = 0.9973. For the wall values of the concentrations of particles we obtain (1 − ε)w = (2 − 3(1
− ε)min C 0.0054−0.0081.

As is seen from the constructed phase diagram (Fig. 1), the values of the transport velocity utr and of
the descent velocity ud differ rather significantly. The reasons are not quite clear yet and, in our opinion, have
to do with the distinctive features of the real geometry of apparatuses with a circulating fluidized bed and
vertical pneumatic transport which have an effect on the hydrodynamics of the two-phase medium.

In conclusion, we note that the proposed diagram of states of a disperse medium with ascending gas
flow includes all the currently known modifications of such systems and contains recommendations for cal-
culation of the pressure gradients and of all, in practice, boundary velocities of the gas. For the first time a
simple expression has been obtained to evaluate the most important characteristic of a flow system, i.e., the
transport velocity (22). This makes the phase diagram proposed useful for practical application in engineering
practice.

NOTATION

A, dimensionless parameter in (25); B = 




ρs

ρf




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√Js

∗

Frt
; d, diameter of the particle; D, diameter of the

riser; Db and Dh, frontal and vertical diameters (dimensions) of the gas bubble; Frh = 
(u − umf)2

gh
, FrH = 

ut
2

gH
,

and Frt = 
(u − ut)2

gH
, Froude numbers; g, free-fall acceleration; H, height of the bed (riser); Hmf, height of the

fluidized bed for u = umf; h, height above the gas distributor; Js, specific mass circulation flux of particles;

J
_

s = Js
 ⁄ ρs(u − ut), J

~
s
∗  = Js

 ⁄ ρsut, and Js
∗  = Js

 ⁄ ρfut, dimensionless mass fluxes of particles; L, vertical dimension

of the cluster; ∆p, pressure difference over the height ∆h; u, filtration rate of the gas; z, height of the

fluidized bed at the grid in the circulating fluidized bed; ε, porosity of the bed; µf, dynamic viscosity of the

gas; ρ, density. Subscripts: b, gas bubble; f, gas; mf, beginning of fluidization; s, particles; t, free-fall condi-
tions of a single particle; w, at the riser wall; 0, conditions of a fixed bed; fr, friction; opt, optimum; sl,
piston regime; tr, transport; int.c, internal circulation; d, descent.
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